Module 12: Synthetic gene
circuits and noise

CSES90: Molecular programming and neural
computation.



Biological inspiration
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A bistable switch

Construction of a genetic toggle

switch in Escherichia coli y
Timothy S. Gardner*{, Charles R. Cantor* & James J. Collins* E = 1_’_—‘/5 —u
* Department of Biomedical Engineering, T Center for BioDynamics and % Center

for Advanced Biotechnology, Boston University, 44 Cummington Street, Boston, dv ol
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A bistable switch

Construction of a genetic toggle
switch in Escherichia coli

Timothy S. Gardner*f, Charles R. Cantor* & James J. Collins*

* Department of Biomedical Engineering, T Center for BioDynamics and  Center

for Advanced Biotechnology, Boston University, 44 Cummington Street, Boston,
Massachusetts 02215, USA
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The repressilator

A synthetic oscillatory network
of transcriptional regulators
Michael B. Elowiiz & Stanislas Leibler

Departments of Molecular Biology and Physics, Princeton University, Princeton,
New Jersey 08544, USA
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The Repressilator

A biological oscillator
(Elowitz, 2001)



An mammalian synthetic oscillator

A tunable synthetic mammalian oscillator

Marcel Tigges!, Tatiana T. Marquez-Lago"*?, J6rg Stelling">® & Martin Fussenegger'
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Systems

The complexity brakee
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Can engineering approaches tame the complexity 6;‘ living systems? Roberta Kwok explores five
challenges for the field and how they might be resolved.

4/ Many of the parts are undefined
A biological part can be anything from
a DNA sequence that encodes a specific

protein to a promoter, a sequence that facili-

tates the expression of a gene. The problem is

The circuitry is unpredictable
Even if the function of each part is

= known, the parts may not work as
expected when put together, says Keasling.

The complexity is unwieldy
L As circuits get larger, the process of
" constructing and testing them becomes
more daunting. A system developed by Keas-

' | Many parts are incompatible

4 Once constructed and placed into
cells, synthetic genetic circuits can

have unintended effects on their host. Chris

Variability crashes the system

Synthetic biologists must also ensure

that circuits function reliably. Molecu-
lar activities inside cells are prone to random
fluctuations, or noise. Variation in growth con-

“The field has had its
hype phase. Now it

needs to deliver.”
— Martin Fussenegger

http://www.nature.com/nature/focus/syntheticsytemsbiology/index.html



Why is it difficult to engineer synthetic

gene circuitse

1. Synthetic gene circuits have to operate in a complex
biological environment

2. Biology is *noisy” (small copy humbers of many
molecules,...)

3. Existing parts aren’t modular or well characterized



A simple biological network
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A complex synthetic nhetwork



A complex synthetic nhetwork
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An complex synthetic network
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Noise In gene expression
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Noise In gene expression

Consider genes for two fluorescent proteins controlled by identical promoters in E. coli

Monitor time-varying fluorescence within a single cell and across cell populations:
cells with the same amount of each fluorescent protein species appear yellow,
cells with differing amounts of the two species appear red or green
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M.B. Elowitz,AJ. Levine, E.D. Siggia, P.S. Swain, Science, 2002



Noise In gene expression

Express reporter genes under lac-
repressible promoters in E. coli
strain (M22) lacking repressor
protein lac

Minimal intrinsic noise without
lac repression of reporter genes

M.B. Elowitz, A J. Levine, E.D. Siggia, P.S. Swain, Science, 2002

Express reporter genes under lac-
repressible promoters in wild-type
E. coli strain (RP22) expressing
repressor protein lac

Increased intrinsic and extrensic
noise due to lac repression

Extrensic noise increase suggests cell-
cell variation in lac expression



Noise In gene expression

Quantification of intrinsic and extrensic noise for populations of two strains of E. coli

A A A
2 A A A A
A . A
ry “ ‘A& - A
_E.“ 1.2 1 A v 4, v;; A ‘: A
k7] & A w7 A A
5 A '777‘7“1;“ A “
E A “ v W xa "vvﬂ' N
= w, AV ‘[v’n‘ Ay A
o . :;3‘*}1“ ¥y 4
& | v vy £ x’ v ‘:} Ay
1 . N ': = 3 uh
o AL Aaaa ‘{‘ A A
o Ty '&%f'.'
Q@ R A Ai'f A ¥ -
£ Ax vy & k#‘ v N
o "t i % >y 4 A A
(O] A A l‘
N - ~ “
T 08| SN 2N O
A oy v 6 G_J\
= % xS
S Z RS
z v M22 o <
» D22
0.6 1 | I |
0.6 0.8 1 1.2 14

Normalized mean CFP intensity

M.B. Elowitz,A]. Levine, E.D. Siggia, P.S. Swain, Science, 2002

Each point represents mean
red and green fluorescence in
a single cell

Strain M22 is less noisy
Strain D22 is more noisy



What can we do to make better

gene circuitse

1. Create new parts and characterize them better

2. Design network architectures that are more robust 1o
perturbations



An Improved and tfunable bistable
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An Improved and tfunable bistable
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An Improved and tfunable bistable

switch

Rewritable digital data storage in live cells via
engineered control of recombination directionality

Jerome Bonnet, Pakpoom Subsoontorn, and Drew Endy’

Department of Bioengineering, Room 269B, Y2E2 Building, 473 Via Ortega, Stanford University, Stanford, CA 94305

Edited by David Baker, University of Washington, Seattle, WA, and approved April 6, 2012 (received for review February 8, 2012)
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An iImproved synthetic oscillator
LETTERS

A fast, robust and tunable synthetic gene oscillator

Jesse Stricker'*, Scott Cookson'*, Matthew R. Bennett"?*, William H. Mather’, Lev S. Tsimring® & Jeff Hasty'*
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An iImproved synthetic oscillator
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Cellular reprogramming
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Production of the antimalarial drug precursor
artemisinic acid in engineered yeast

Dae-Kyun Ro'*, Eric M. Paradise®*, Mario Ouellet!, Karl J. Fisher®, Karyn L. Newman', John M. Ndungu?,
Kimberly A. Ho', Rachel A. Eachus’, Timothy S. Ham®, James Kirbyz, Michelle C. Y. Changl, Sydnor T. Withers?,
Yoichiro Shiba? Richmond Sarpong® & Jay D. Keasling">*®

Malaria is a global health problem that threatens 300-500 million
people and kills more than one million people annually'. Disease
control is hampered by the occurrence of multi-drug-resistant
strains of the malaria parasite Plasmodium falciparum®®. Syn-
thetic antimalarial drugs and malarial vaccines are currently being
developed, but their efficacy against malaria awaits rigorous clinical
testing®®. Artemisinin, a sesquiterpene lactone endoperoxide
extracted from Artemisia annua L (family Asteraceae; commonly
known as sweet wormwood), is highly effective against multi-
drug-resistant Plasmodium spp., but is in short supply and
unaffordable to most malaria sufferers®. Although total synthesis
of artemisinin is difficult and costly’, the semi-synthesis of
artemisinin or any derivative from microbially sourced artemisi-
nic acid, its immediate precursor, could be a cost-effective,
environmentally friendly, high-quality and reliable source of
artemisinin®®. Here we report the engineering of Saccharomyces
cerevisiae to produce high titres (up to 100 mg1™") of artemisinic
acid using an engineered mevalonate pathway, amorphadiene
synthase, and a novel cytochrome P450 monooxygenase
(CYP71AV1) from A. annua that performs a three-step oxidation
of amorpha-4,11-diene to artemisinic acid. The synthesized arte-
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S. cerevisiae strain

Figure 2 | Production of amorphadiene by S. cerevisiae strains. The various
S. cerevisiae strains are described in the text. Cultures were sampled after
144 h of growth, and amorphadiene levels were quantified. Data, shown as
total production, are mean * s.d. (n = 3).
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Applications

Tissue Engineering
Diagnostics
Therapeutics
Chemical Synthesis
Materials

SYNDUSTBY

The news of “Synthia,” the world’s first
human-made species, is just the latest
from a rapidly growing artificial life industry.

Synthetic biology (or “Syn Bio”) aims to
profit from the design and construction ™ \
of industrially useful life-forms.

Syn Bio's Big Shots

Global corporations are investing
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to design synthetic microbes
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DNA Synthesis Foundries —— o ‘i

carbon
DNA foundries produce
the raw material for
creating artificial
life: synthetic DNA
(sDNA).
Over 70 DNA
foundries
worldwide manufacture sDNA for genetic engineers
and synthetic biologists. The market for SDNA already
exceeds a billion dollars annually. Even long DNA
sequences - entire genes, for example - can be ordered
over the Internet and delivered within two weeks. The
speed of producing accurate DNA sequences is doubling
every two years and costs are halving even faster.
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